
NUMERICAL INVESTIGATION OF THE HEATING OF CONDENSED MEDIA 

BY VOLUME HEAT SOURCES 

Yu. V. Zhitnikov 
and Yu. I. Zetser 

UDC 522.278.538.569 

One possible mechanism of action on materials involves the production of volume heat 
sources in them either by absorption of electromagnetic radiation or passage of an electric 
current. In both cases, the action is determined by distributed volume heat sources. As a 
result of the action of these sources there can arise in the material a region with a phase 
transition, and it is the development of this region that determines the change in the physi- 
cal properties and the softening of the material. Examples of such action in practice are 
the action of solar radiation on ice and frozen soil [1-4] and of electromagnetic radiation 
on various materials [5, 6]. 

A characteristic feature of a phase transition in the presence of distributed volume heat 
sources is the existence of a finite isothermal transitional region [7], determined by the 
fact that the temperature in it has reached the phase transition point but the absorbed en- 
ergy is still below the phase-transformation energy. In the general case a boundary of this 
region can be the boundary of discontinuity of the distribution of the internal energy [7, 8]. 
This problem was analyzed mathematically in [7], where it was proved that the generalized 
Stefan problem has a unique solution and the boundary conditions were established in differ- 
ent cases. Examples of the solution of problems of a phase transition with an isothermal 
zone are presented in [4, 5] and actual experimental data are presented in [i, 2]. 

In the present paper we investigate numerically - in a one-dimensional approximation 
within the generalized Stefan problem - the development of a region of phase transformation 
(melting) in a material under the action of distributed heat sources. The evolution of the 
isothermal region depends on the thermal regime, the thermophysical properties of the mate- 
rials, and the character of the distribution of the internal heat sources. We show that 
under the action of the heat sources a transition is possible from the generalized Stefan 
problem to the classical problem and vice versa. This corresponds to the case when the iso- 
thermal zone formed (generalized Stefan problem) remains localized (classical Stefan problem) 
during the interaction process and then it can once again expand into a region of finite 
size. We formulate the conditions for such a transition as well as the conditions determining 
the change in the regime of development of the boundary of the isothermal region of both weak 
and strong discontinuities of the heat flux. 

The numerical solution of the one-dimensional Stefan problem is based on the difference 
method for solving the one-dimensional heat-conduction equation using an implicit scheme and 
the sweep method [9] as well as a regular algorithm which we propose for changing the 
arrangement of the grid nodes as the boundary of the phase-transition region moves. The 
grid nodes move only near the boundary; other grid nodes remain stationary. The numerical 
algorithm makes it possible to determine both the displacement of the boundary itself and the 
change in temperature as a function of time in the corresponding regions. Other numerical 
algorithms are considered in [8, i0]. 

i. Formulation of the Problem. A plate of thickness H (the x axis is oriented perpen- 
dicular to the surface of the plate and is directed into the material) heated by distributed 
volume heat sources with density qv(X, t), 0 5 t ! T, where T is the time during which the 
heat sources act, is studied in the coordinate system OYX. We designate the region 0 5 x ! H 
by ~0 = {0, H}. The appearance of a phase-transition region depends on the phase-transforma- 
tion temperature T F and the heat energy of the phase transformation QF per unit mass of the 
material (in the case of melting, the appearance of the phase transition region depends on 
the specific heat of melting). We assume that the thermal characteristics of the material 
before and after the phase transformation are known and, for simplicity, that they are uniform 
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in space and time. The initial temperature is T(x, 0) = 0. In the general case there can 
arise in the plate regions with temperature T(x, t) > T F (the region after the phase trans- 
formation ~F), T(x, t) < T F (the region before the phase transformation ~), and T = T F (iso- 
thermal region, in which a phase transformation occurs, ~T)" We note that the region ~T can 
be localized, as in the classical Stefan problem [8] (i.e., region of measure zero), or it 
can be extended, as in the generalized Stefan problem [7[ (regions of measure greater than 
zero). Writing the one-dimensional heat-conduction equation in each of the characteristic 
regions, we have 

OT ~ RIO~T 
a-T az --~- + Q1 (x, t), T < Tr, x ~ ~, 

( i . i )  
aT R 02T a--7 = ~--~2 ~ Q 2 ( x ,  t), T > T r ,  x ~ ;  

T = T F, x ~ ~r ,  ( 1 . 2 )  

where R2 = ~F/alF; aF ~ OFC~; R1 = ~/a; a ~ pc; Q1 ~ qv/a; Q2 ~ qv/aF; XF, PF, and c F a r e  t h e  t h e r -  
mal c o n d u c t i v i t y ,  t h e  d e n s i t y ,  and t h e  h e a t  c a p a c i t y  in t he  m a t e r i a l  a f t e r  t h e  phase  t r a n s i -  
t i o n ;  and ,  t ,  p, and c a r e  t h e  same q u a n t i t i e s  b e f o r e  t h e  phase  t r a n s i t i o n .  The r e g i o n  ~T 
a l s o  i n c l u d e s  t h e  b o u n d a r y  be tween ~ and ~F, i f  such  a r e g i o n  e x i s t s ,  and f o r  t h i s  r e a s o n  
E q . ( 1 . 2 )  can be r e g a r d e d  as  t h e  bounda ry  c o n d i t i o n  f o r  Eq. ( 1 . I )  in  t h i s  c a s e .  

B e s i d e s  t h e  c o n d i t i o n  ( 1 . 2 ) ,  i t  i s  a l s o  n e c e s s a r y  t o  w r i t e  down an a d d i t i o n a l  c o n d i t i o n  
determining the evolution of the boundary of the phase transition. In what follows, we make 
such an analysis of the evolution of the region ~T as a function of the thermal regime. The 
standard flux or temperature boundary conditions can be imposed on the exterior surfaces of 
the plate. 

2. Analysis of Possible Regimes of Evolution of the Boundaries of the Region of Phase 
Transformation. The classical and generalized Stefan problems are studied in, respectively, 
[7, 8]. It is well known [8] that in Stefan's problem the condition must be satisfied at the 
phase transition boundary xF(t) 

dx F q-- _ q+ 
d--U= QFP (2.i) 

0T 0T (x, t); QF is the phase-transformation energy; Here q + = - -  lira ~ ( x , t ) ;  q - = - -  lira )vF~ 7 
~xF+O X~XF--O 

and,  p i s  t h e  d e n s i t y  o f  t h e  m a t e r i a l .  I t  i s  assumed t h a t  T ~ TF, x 5 xF; T ! TF, 
x ~ x F. At the boundary of the phase-transformation region the energy flux q has a discon- 
tinuity of the first kind. 

A characteristic feature of the generalized Stefan problem is the presence of an extended 
X(1) / ~ ~ (2) isothermal zone (for example, with the boundary [x~)(t), x~)(t); F ~x~-~xF, T= T;}). A nec- 

essary condition for the formation of an extended isothermal zone is the presence of volume 
sources, which are presented in [7], where different boundary conditions on the boundary of 
this zone are established (aside from the condition T = T F) and the question of the existence 
and uniqueness of the solution is considered. Thus, in the case when this zone expands 

( x ~ ) < O , x ~ ) ~ O )  the condition 

aT 
0-'7 - = 0 ,  ( 2 . 2 )  

must be satisfied. This condition corresponds to no heat flow out of the isothermal region 
as the region expands. We introduce the heat quantity Qs(X, t)(x~[x~), x~)]) absorbed 

per unit volume in the process of the phase transformation Qs 5 QFP. When the absorbed heat 
energy Qs reaches at some point of the region ~T the value PQF the phase transformation pro- 
cess stops at this point. The energy required for the phase transformation in the isother- 
mal z6ne is PQF - Qs" 

We now consider the case when the heat flux at the boundary of the isothermal region 
is different from zero. Assume first that the isothermal region adjoins the region before 
the phase transition, i.e., x ~ x9 2), T ! T F. Then the flux q+ > 0. Consider the heat-bal- 

ance equation for a quite small region 6x~ 2) < 0 adjoining the boundary. The energy fl0wing 

out of this region is q+6t, and the heat flowing into the region is qv6t6xF(2) , which is a 

quantity of second order (in the limit 6x~)-+0 ) compared with q+6t. Therefore, the thermal 
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energy will start to decrease and crystallization will be the only possible process here. 
Then, in the leading-order approximation for the crystallization process q+6t =-(pQF+Qsi(x,i 
' t ) ) S x ~  ~-) we have the limit 6 t - + O ,  8 x ~ ) - + O  

t ) '  ( 2 . 3 )  

Similarly, for XF (I) in this regime (x(F~)~0) 

dt = p Q F + Q , , ( x ( $ , ) ,  t )  ' ~ I ) .  ( 2 . 6 )  

If the isothermal region (for example, x _> XF (I), T = TF) ) adjoins the region of the 
material after the phase transition [T(x v, t) _> TF, x <_ XF(1)], we have in the presence of a 
flux q- into this region [7] 

d~ q 
7 - oQ -<4 t)" ( 2 . 5 )  

The equations (2.1)-(2.5) describe the evolution of the phase-transformation zone or the iso- 
thermal zone. Besides these conditions, however, it is necessary to impose additional condi- 
tions which determine the thermal regime in which phase-trannformation regions develop accord- 
ing to one of the laws (2.1)-(2.5). 

We now consider Stefan's problem. Let x-~xF, T(x, t) ~ TF; x ~ x F, T ~ T~; x r > O, 
and let Eq. (2.1) hold on the boundary x = x F. We now formulate the necessary and sufficient 
conditions for the appearance of an isothermal region at the time t = to. Formation of this 
region at t ~ t o means that there appears an isothermal region with the boundary x~)(t), 

x~  ) (t), x~  ) (t) > x~O (t), x ~ ) ( t )  > i~)(t) ,  t > t o a t  t = t o, x~ ) ~ x~ ?) : XF (to)- 

A necessary condition at the moment t = t o for the formation of an isothermal zone is 
q+(x F, t o ) = 0. Indeed, if an isothermal region could form at t = t o + 6t(6t + 0) with q+ > 
0, then on its boundary q+(x~),to~St)>O(6t-~O) and, according to the proof given above, 
the crystallization process would begin and XF (2) < 0, which is impossible, since by conven- 
tion iF (2) > 0. Therefore, if the isothermal region form~ at t = to, there is no heat flux 
q+ = 0. 

A sufficient condition for the formation of an isothermal zone is thet the temperature 
increase T ~ T F for x ~ xF(t 0 + 6t) and 6t e 0 (6t + 0), i.e., near the boundary x F, under 
the necessary condition q+ = 0. Indeed, if this is the case, then at t = to + 6t a zone 
where T > T F forms in front of the boundary of the phase-transformation region XF; this is 
impossible within Stefan's classical problem and means that a phase transition must start at 
these points, i.e., an isothermal zone forms and a transition to the generalized Stefan prob- 
lem occurs. 

We now consider the question of the possible change in the evolution regime of the iso- 
thermal region from expansion (iF (2) > 0) (2.2) to contraction (iF (2) < 0) (2.3). Let at 
t = t o the boundary of the isothermal zone be XF (2), on which the solution satisfies the 
condition (2.2). In order that the isothermal region continue expanding at t > to, i.e., 
6XF (2) > 0, it is necessary that at t = to + 6t, under the boundary condition (1.2), and at 
the fixed boundary XF (a) the flux q+(x~ ),t0+6t)<0 (i.e., for x~x~)(to) the temperature 
increases: T(x, t o + 6t) Z TF). Indeed, if this is not the case, then q+ > 0 and hence the 
crystallization process arises from the boundary XF (2) and the isothermal region does not 
form. These assertions must be checked at each step in time. This will make it possible to 
follow the change in the regime of development of the phase-transformation region. 

The possible change in the regime of development of the phase-transition region from 
Stefan's condition (when the phase-transition region is localized) to the generalized Stefan 
problem (appearance of an extended isothermal phase-transformation region) and vice versa is 
illustrated below in numerical examples. In order to find the temperature distribution in 
the presence of characteristic regions, whose development will be determined by one of the 
conditions (2.1)-(2.5), it is necessary to give a regular procedure for finding the solution 
of Eq. (i.i) in these regions. 
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3. Numerical Algorithm for Determining the Motion of the Boundaries of the Phase 
Transition and Constructing the Solution of the Heat-Condition Equation. According to the 
analysis performed above, a plate of thickness H at the start of the phase-transformation 
process separates into characteristic regions on whose boundaries the condition (1.2) is sat- 
isfied. We now study an algorithm for constructing a numerical solution in this case. Since 
the boundary on which the condition (1.2) holds moves, the nodes partitioning the region 
will also move. In [10]itwo coordinate systems were introduced in order to find the solution 
in the characteristic regions: mobile and stationary; the mobile coordinate system was cho- 
sen in the entire region where the solution was sought. 

In the method proposed below the mobile coordinate system is used only in the neighbor- 
hood of the motion of an unknown boundary; all other grid nodes are stationary. In this way 
we quantize the region whose boundary moves according to the conditions (2.1) and (2.3)-(2.5). 

Let x F be the phase-transformation boundary, whose motion is determined by one of the 
conditions (2.1) and (2.3)-(2.5). We first take Stefan's condition, when the solution of the 
heat-conduction equation must be sought for x > xF(T < TF) and x < XF(T > TF). Let xj(j = 
! ..... N) be the nodes of the grid partitioning the plate, and let Aj = xj+ l -- xj (j = i, 
..., N - I) be the grid step. We assume that x F = xj at t = t o . Then we proceed as follows. 
We displace the point xj+ l into xj and we obtain in the region x F 5 x 5 H a new partition 
with nodes $j+1, xj+2, -.., XN. Here g~+1 is a new node, and the grid step A'~+1, A~+2, ..., 
AN- I, A~+ 1 = xj+ 2 -- x F (at the first step x F = xi). The region 0 5 x ~ XF, ho~ever,Jis parti- 
tioned 5y the nodes x, ..... zj_~, ~7(~j =xj) , at th~ first step t = to, and the grid step 
Al ..... &j-l, where 5~_~ =xF--xj_~ (x F = xj at t = to). The boundary Sj = ~j+l for these 
regions will move in accordance'with the condition (2.1), the fluxes and temperatures in 
which are calculated at the preceding step 

6~j ~ 6~S+ ~ = - - ( q -  - -  q+)6t/pQF 6xF ( 3 . 1 )  

where 6t is the time step. The temperature at the point $j+~ at the preceding time step is 
calculated according to the linear approximation 

= ~ - -  6~j+~/Aj+~ = Tj  (t).  T j + ~ ( t )  T F + L ( T j + ~  TF) ~ ' 

Thus, the nodes ~j = ~j+l move continuously with time. As soon as the node Sj reaches xj+l 
i( i.e., ~j+1 = xj+l), we return to the old nodes xjand xj+ I. At xj+1 the temperature T~+ I = 
iTF, and at xj~ we approximate the temperature by the linear law Tj = T F - (T F - Tj - l) 
i r 
i(xjj$~ - xj)/A~ - i. After this, we displace xj+ 2 into xj+ l and repeat the entire procedure. 
iAs a result we obtain an algorithm for changing the grid as the nodes move. At each momenn 
iin time the heat-conduction equations (i.i) were solved numerically by an implicit scheme 
fusing the sweep method [9] along the nodes chosen in the manner described above. 

If the region of the phase transformation (T > T F) adjoins the isothermal region (for 
example, we take the boundary x F = XF(1)), then the motion of the boundary is found for one of 
the conditions (2.4) or (2.5). Then in each region the grid is chosen according to the 
algorithm described above, and the displacement of the nodes will be determined, correspond- 
ingly, by 6~j = ~i = ~tq-/(PQF i-Qs) > 0 (sign (+ or -) depends on the character of the phase- 
transformation process). A similar condition is written for the boundary XF(2)(t). When the 
isothermal zone is localized, its motion is described by the relation (3.1). 

We now consider the case of expansion of the isothermal zone according to the condition 
(1.2) and (2.2), choosing the static grid x I, .... x N in the entire strip. 

Let xj = x F be the boundary of the isothermal region (T = TF, x < XF). Then the heat- 
condition equation (i.i) is solved numerically along the grid with the nodes xj ..... x N 
under the boundary condition (2.2). Displacement of this region into the next node was deter- 
mined from the condition that the temperature at the boundary xj reached the prescribed value 
Tj = T F - g, where g determines how closely T F is approached. 

Thus, we have!proposed a numerical algorithm for finding the temperature distributions 
in different characteristic regions. We consider below different examples of the appearance 
and development of phase-transition regions, taking into account the isothermal zone and its 
localization and possible reappearance. We note that the proposed algorithm for describing 
the evolution of each of the three regions (~, ~T, ~F) can be used for any number and combi- 
nation of the indicated regions, and the solution inside the regions themselves will be found 
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with the help of an implicit scheme by the sweep method. The assertions proved above and the 
proposed computational algorithm also remain valid for nonuniform thermophysical parameters. 

4. Numerical Examples. We considered a strip of thickness H and a distribution of vol- 
ume sources qv = Ae-=~, where ~ = x/H and A and ~ are parameters. The surfaces of the strip 
are thermally insulated, and the initial temperature is T(0, x) = 0 (if T(0, x) = T o = const, 
then the calculations presented below correspond to AT = T - T 0). Before starting the compu- 
tational process, it is convenient to make the physical quantities dimensionless: the time 
t' = t/T and the coordinate $ = x/H, where T = aH2/~. Then in Eq. (i.i) we have El = i, 
QI -- q~ H2/L, Q~ = qvH2a/la~ --- Q1a/aF, R2 ---- %Fa/aF%, A' --- AH~'/L [use t' instead of t and ~ instead 
of x in Eq. (i. i)]. We also introduce the quantities Q'F ~-pQF/a, Q: = Qs/a and the fluxes 
q*=--aT~at(T< TF), q-------%FX-IOT/O~ for T > T F (Q'F, Q's, q+, q- in degrees). Then the 
conditions (2.1) and (2.3)-(2.5) can be written in the dimensionless form (g = XF/H or ~ = 
xF(Z)/H) 

d~ q----q+ (q+ z(l~_~ )) 
i t �9 dr"-7 " =  Q F i Q s  = 0  a t  ~--- (4.1) 

The equations (i.i), written in the dimensionless form in the variables (g, t') with 
the condition (4.1), were implemented numerically by the method described above. As a result, 
the motion of the boundaries of the characteristic regions was calculated as a function of 
the time t'. 

Figure 1 displays a number of curves of the development of the boundaries of the charac- 
teristic regions as a function of the parameters R2, Q'F, TF, andA'. The isothermal region 
formed from the boundary ~ = 0 and is designated by the dashed line (~r = x~)(t)/H), while 
the phase-transition region(~ F = x~)(t)/H) is denoted by the solid line. The calculations 
were performed for the parameters T F = I, a = aF~ R 2 = i, A' = 5, a= i, and Q'F = 0.i; 0.05 
(curves 1 and 2). The motion of the boundary of the isothermal zone did not change, since the 
the boundary of the phase-transition zone did not "overtake" the boundary of the isothermal 
zone. The motion of the phase boundary, however, "accelerated." This is connected with the 
decrease in the phase-transformation energy. 

The development of the phase-transition region for the same parameters as above and 
Q'F = 0.03 is shown in Fig. 2. The boundary of the phase-transformation region "overtakes" 
the boundary of the isothermal region (point A, Fig. 2), and this region becomes localized, 
i.e., the generalized Stefan problem transforms into the classical Stefan problem. In the 
process, the velocity of the phase-transformation boundary decreases, since Q's($, t') = 0. 
The phase-transition boundary then propagates in accordance with the condition (2.1) (the 
section AB, Fig. 2). The slow down of the boundary of the phase-transformation region re- 
sults in heating of the material in the region before the phase transformation from the vol- 
ume sources in it and the possibility of formation of an isothermal zone (point B, Fig. 2) 
in accordance with the criterion formulated above; it then propagates up to the boundary of 
the strip. Thus, the decrease in the absorption energy "accelerates" the boundary of the iso- 
thermal zone and the region of the material after the phase transformation and results in 
the seemingly "oscillatory" development of an isothermal zone - from finite size to local- 
ized and vice versa. 

An increase in the phase-transition temperature leads to a similar effect. Figure 1 
displays (curve 3) the time dependence of the position of the boundary for A' = 5, a = i, 
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Q'F = 0.05 and T F = 1.5. It is obvious that an increase in the phase-transition temperature 
slows down the motion of the isothermal region and makes it possible for this region to be 
localized. 

Figures 3 and4 display the temperature distribution over the thickness of the plate for 
different times t'. The temperature distribution in Fig. 3 corresponds to curve 1 in Fig. 1 
and its thermal parameters and the distribution in Fig. 4 corresponds to the curve of Fig. 2 
and its thermal parameters (the section AB in these figures is the isothermal zone). Figure 
4 shows the formation, localization, and then expansion (the section AB) of the isothermal 
zone. 

Thus, the method proposed above was used to perform calculations of the evolution of the 
motion of the boundaries of characteristic regions as a function of time. It was shown that 
the phase-transformation regime can change from a localized isothermal region to a finite 
region and vice versa. This must be taken into account in real problems, since it can sub- 
stantially influence the property of the material in front of a phase-transformation region 
and it will also make possible the creation of extended isothermal regions and thereby influ- 
ence the properties of the material with smaller energy expenditures than that required for 
a phase transition. This latter propertymakes volume heat sources (in particular, microwave 
radiation) promising for fracturing or weakening an entire series of materials. 
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